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Experimental study for the comparison of classifier combination methods
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Abstract

In this paper, we compare the performances of classifier combination methods (bagging, modified random subspace method, classifier
selection, parametric fusion) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate
the logistic model are: (a) combination function among input variables, (b) correlation between input variables, (c) variance of observation,
and (d) training data set size. In view of typically unknown combination function among input variables, we use a Taguchi design to
improve the practicality of our study results by letting it as an uncontrollable factor. Our experimental study results indicate the following:
when training set size is large, performances of logistic regression and bagging are not significantly different. However, when training set
size is small, the performance of logistic regression is worse than bagging. When training data set size is small and correlation is strong,
both modified random subspace method and bagging perform better than the other three methods. When correlation is weak and variance
is small, both parametric fusion and classifier selection algorithm appear to be the worst at our disappointment.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Classification is an important problem in data mining. It
has been studied extensively by the statistics and machine
learning communities as a possible solution to the knowl-
edge acquisition or knowledge extraction. One of the main
issues of classification modeling is the improvement of clas-
sification accuracy. For that purpose, many researchers have
recently placed considerable attention on the task of clas-
sifier combination methods. Among them three basic ap-
proaches are classifier ensemble, classifier selection, and
parametric fusion.

Classifier ensemble algorithms combine the results of sev-
eral individual classifiers [1–8]. However, most of ensemble
algorithms do not take into account the local expertise of
each classifier. This can mislead the consensus of multiple
classifiers by overlooking the opinion of some better skilled
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classifiers in a specific region to which the given input be-
longs.

Sometimes, it is useful to decompose a complex problem
into simpler subproblems and solve each subproblem one
by one, instead of learning the global relation between in-
put variables and target variable. Numerous approaches con-
cerned with classifier selection by local region have been
developed [9–13].

On the other hand, in an effort to find the best classifier,
Shannon and Banks [14] suggested a parametric approach
to combine a set of classification trees into a single final
tree. They used the maximum likelihood estimate of the
central tree which minimizes the distance from individual
trees obtained based on bootstrap samples. We call this a
parametric fusion.

Many empirical studies have been performed to compare
various classifier combination methods [7,8,15,16]. Most
of the comparison studies, however, are based on the real
data sets instead of carefully designed experimental setting.
Generalization of such results could be risky. Therefore, it
is necessary to derive some rules by which one can choose a
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proper classifier combination methods based on the nature
of data sets [17]. This kind of research is scarcely done
regardless of its importance.

In this paper, we use Monte Carlo simulation in order to
help a selection procedure for classifier combination meth-
ods based on various data characteristics.

The organization of this paper is as follows. In Section 2,
we review the literature on the classifier combination meth-
ods in order to briefly explain the approaches to be compared
in our study. In Section 3, we introduce the Taguchi experi-
mental design for Monte Carlo simulation for comparison of
classifier combination methods. In Section 4, we summarize
the simulation results. Finally in Section 5, we discuss the
implication of our results and suggest further study areas.

2. Classifier combination methods

Frequently used data classification approaches include
neural networks, decision trees and logistic regression. Neu-
ral networks in general are known to provide relatively high
classification accuracy for a non-linear model. Decision trees
are frequently applied to the cases with categorical input
variables and can be easily interpreted. Apparently, decision
tree is the most popular base classifier for ensemble. How-
ever, ensemble algorithms based on the tree have been al-
ready actively investigated since 1994 using simulation and
empirical studies [1]. Logistic regression is one of the clas-
sical parametric approaches used for classification.

When there are two possible classes � = {w0, w1}, the
posterior probability P(w1|x) for inputs x based on a logistic
regression can be modeled as follows:

P(w1|x1, . . . , xK) = exp(�̂0 + ∑K
k=1xk�̂k)

1 + exp(�̂0 + ∑K
k=1xk�̂k)

, (1)

where �̂k is the estimated logistic regression coefficient for
input variable xk [18].

In this research, we use such a logistic regression model as
a base classifier and attempt to compare the performance of
combination methods such as classifier ensembles (bagging,
random subspace method), classifier selection, and paramet-
ric fusion.

2.1. Bagging

Bagging algorithm introduced by Breiman [1] votes clas-
sifiers generated by bootstrap samples. A bootstrap sample
is generated by randomly sampling instances from the train-
ing set with replacement from training set T, and construct
the classifier using each bootstrap sample. Then combine
classifiers by simple majority vote. That is assign the most
frequently predicted outcome as the final classification. The
basic idea of bagging is to reduce the deviation of sev-
eral classifiers by voting the classified results due to boot-
strap resamples. In this paper, we choose bagging as one

of ensemble methods and compare its performance to the
others.

2.2. Modified random subspace method

Ho [5] proposed the random subspace method (RSM) in
which input variables are randomly selected for training in-
dividual classifiers and the results of the classifiers are com-
bined by the majority voting. We use a revised version of
Ho’s RSM where the training sample is replaced with boot-
strap resample. It is called a modified RSM. This modified
version has an advantage over the original approach in a way
that the resulting classification rule can be more robust than
that trained based on the same sample. We randomly select
half of input variables for a logistic model training based on
each bootstrap resample.

2.3. Classifier selection

The classifier selection approach has two possible training
strategies. The first approach specifies the region first and
then builds a responsible classifier for each region [9,16].
Each classifier is trained for the region for which it is re-
sponsible. In the second approach, all classifiers are trained
based on whole training data set and the best classifier is
found for each pre-specified region [10,13].

In this paper, we use the first approach due to the fact
that it can be more easily applied to practitioners. More
detailed description for the approach used in our analysis is
as follows:

In order to find the expert classifier in a local region,
divide a training data set into L clusters, C1, C2, . . . , CL,
based on data characteristics, and find the cluster centroid,
v1, v2, . . . , vL, as the arithmetic means of the observations
in the respective clusters. Next, train individual classifiers
D1, D2, . . . , DL for corresponding clusters C1, C2, . . . , CL,
respectively. Given unknown test observation i, find the near-
est cluster center among v1, v2, . . . , vL, and then observa-
tion i is classified using the corresponding classifier which
is responsible for that cluster.

2.4. Parametric fusion

Shannon and Banks [14] suggested a decision tree which
is located in a minimum distance from all the individually
fitted decision trees based on bootstrap resamples.

Since we use a logistic regression model as a base
classifier, the following mathematical programming model
is used to find a combined model P having a minimum
error:

Min
B∑

b=1

(p̂b − p)2, (2)
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where P̂b is obtained based on P(w1|x) in (1), and B is the
total number of bootstrap resamples (b = 1, . . . , B).

Many researchers compared the performances of various
classifier combination methods using real data sets. But the
results may change according to given data characteristics.
In order to generalize the results, a simulation study is nec-
essary based on the controlled design.

3. Experimental design

We use a Monte-Carlo simulation based on a Taguchi
design which accommodates not only controllable factors
but also uncontrollable factor in the experiment.

3.1. Taguchi design

In our experiment, design factors are used to represent
various data characteristics as well as the classifiers.

Five factors used in the simulation are: (a) combination
function among input variables, (b) correlation between in-
put variables, (c) variance of observation, (d) training set
size, and (e) classification algorithms. Among these fac-
tors, (a) combination function is considered as a uncontrol-
lable factor since it is not typically known from the given
data.

In our simulation, we assume the following. There are
10 input variables xk (k = 1, . . . , 10) and outcome variable
with two possible classes �={w0, w1} where the 10 xk are
generated from a multivariate normal distribution (0, �2�).
The true relationship between the output and the 10 input
variables, P(w1|x), is assumed to follow a linear logistic
model f (x). Details regarding the levels used for each factor
are as follows.

(a) Combination function: We consider two kinds of com-
bination functions where the true activation function be-
tween input and output is assumed to be logistic function:

p(w1|x) = exp(fi(x))

1 + exp(fi(x))
for i = 1, 2. (3)

Here fi(x) takes one of the following two types of combi-
nation functions:

f1(x) = 0.03 log(x1) − 0.09 log(x2) + 0.07 log(x3)

− 0.01 log(x4) + 0.02 log(x5) − 0.16 log(x6)

+ 0.01 log(x7) − 0.21 log(x8) + 0.31 log(x9)

− 0.11 log(x10) + �,

f2(x) = sin(x1x2) + 0.01(x3 − 0.2)2 + 0.01x6(x4 − x5)

+ 0.02x7 − 0.04(x8 + x9) + 0.8x10 + �,

where � ∼ N(0, 1).

(b) Correlation between input variables: Generating the
10 input variables from multivariate normal distribution with
mean 0 and variance–covariance matrix �2�, we use three
levels of correlation matrix � (weak, medium and large)
as displayed in Tables 1–3. For the weak correlation, we
use the range of individual correlation to be 0.05–0.3 while
0.4–0.6 for the medium, and 0.7–0.92 for large correla-
tion.

(c) Variance of input variables �2: In order to assess the
effects of variation in data sets on various classifier combi-
nation methods, we use three levels of �2 to be 1, 10, and
100. The resulting ranges of distributions of P(w1|x) are
0.37–0.62, 0.15–0.75, 0.05–0.95, respectively.

(d) Size of training data set: Sample size may play
an important role in classification accuracy [19]. In the
previous empirical research, Bauer and Kohavi [15] used
training data sets ranging from 53 to 1620 times of the di-
mension of input variables in the base learning algorithms
such as decision tree and Bayes classifier. Webb [20] used
training set size to be 3 to 3488 times larger than that of
input variables in decision tree. Raudys and Jain [19] used
data size which corresponds to 1.4 times of the dimension
of input variables in Euclidean distance (ED) classifier.
However, logistic model fitting would fail with this size of
data. In their study, other classifiers (Fisher’s linear classi-
fier, nearest neighbor classifier, etc.) used the training set
size ranging from 4 to 100 times of the dimension of input
variables.

We consider two levels of relative training data set size to
be 5 and 100 times of input dimension, respectively:

• Small Training Data Set 50.
• Large Training Data Set 1000.

Then we use additional 50 observations for test data. All
subset data sets for training and test are extracted from the
identical original data set.

(e) Classification methods: We use five kinds of classi-
fication algorithms (bagging, modified random subspace
method, classifier selection, parametric fusion, logistic
regression) to compare their classification accuracy. Base
algorithm is a logistic model. The number of bootstrap
resamples used for ensemble algorithms is fifty based on
Breiman [1,21]. For modified random subspace method, we
randomly select half of input variables (five) for a logis-
tic model training based on each bootstrap resample. For
classifier selection, K-means clustering algorithm is used to
find five clusters based on the ten input variables.

In summary, the design factors and their levels are sum-
marized in Table 4.

Therefore, we have a total of four controllable factors
(2 × 3 × 3 × 5) as well as one uncontrollable factor (com-
bination function) with two levels each. We put controllable
factors in a 2 × 3 × 3 × 5 inner array and this array is repli-
cated two times according to an outer array formed by the
levels of uncontrollable factor. And this whole procedure is
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Table 1
Weak correlation between input variables �

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1 0.07 0.27 0.2 0.13 0.01 0.18 0.11 0.24 0.08
x2 0.07 1 0.07 0.16 0.27 0.16 0.24 0.05 0.20 0.13
x3 0.27 0.07 1 0.18 0.09 0.24 0.14 0.29 0.05 0.16
x4 0.20 0.16 0.18 1 0.05 0.21 0.27 0.13 0.01 0.21
x5 0.13 0.27 0.09 0.05 1 0.02 0.03 0.19 0.12 0.04
x6 0.01 0.16 0.24 0.21 0.02 1 0.28 0.21 0.16 0.21
x7 0.18 0.24 0.14 0.27 0.03 0.28 1 0.12 0.27 0.26
x8 0.11 0.05 0.29 0.13 0.19 0.21 0.12 1 0.27 0.03
x9 0.24 0.20 0.05 0.01 0.12 0.16 0.27 0.27 1 0.07
x10 0.08 0.13 0.16 0.21 0.04 0.21 0.26 0.03 0.07 1

Table 2
Medium correlation between input variables �

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1 0.41 0.53 0.39 0.6 0.59 0.39 0.45 0.41 0.45
x2 0.41 1 0.60 0.60 0.45 0.51 0.59 0.41 0.52 0.51
x3 0.53 0.60 1 0.47 0.51 0.42 0.47 0.42 0.38 0.46
x4 0.39 0.60 0.47 1 0.39 0.47 0.51 0.42 0.58 0.56
x5 0.6 0.45 0.51 0.39 1 0.38 0.42 0.51 0.57 0.36
x6 0.59 0.51 0.42 0.47 0.38 1 0.44 0.41 0.47 0.45
x7 0.39 0.59 0.47 0.51 0.42 0.44 1 0.60 0.39 0.51
x8 0.45 0.41 0.42 0.42 0.51 0.41 0.60 1 0.38 0.39
x9 0.41 0.52 0.38 0.58 0.57 0.47 0.39 0.38 1 0.47
x10 0.45 0.51 0.46 0.56 0.36 0.45 0.51 0.39 0.47 1

Table 3
Large correlation between input variables �

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1 0.81 0.75 0.79 0.72 0.92 0.77 0.82 0.86 0.81
x2 0.81 1 0.92 0.71 0.74 0.86 0.72 0.74 0.92 0.77
x3 0.75 0.92 1 0.72 0.75 0.71 0.88 0.72 0.71 0.88
x4 0.79 0.81 0.72 1 0.75 0.77 0.71 0.81 0.77 0.91
x5 0.72 0.74 0.75 0.75 1 0.81 0.83 0.81 0.71 0.76
x6 0.92 0.86 0.71 0.77 0.81 1 0.71 0.75 0.75 0.74
x7 0.77 0.72 0.88 0.71 0.83 0.71 1 0.85 0.81 0.76
x8 0.82 0.74 0.72 0.81 0.81 0.75 0.85 1 0.77 0.78
x9 0.86 0.92 0.71 0.77 0.71 0.75 0.81 0.77 1 0.71
x10 0.81 0.77 0.88 0.91 0.76 0.74 0.76 0.78 0.71 1

Table 4
Design factors and levels

Factors Levels

Combination function f1(x) f2(x)

Correlation between input variables 0.05–0.3 0.4–0.6 0.72–0.92
Variance of observation (�2) 1 10 100
Classification algorithm Bagging, Modified RSM Parametric fusion, Classifier selection Logistic regression
Training set size 5 times of input variable 100 times of input variables
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again repeated 10 times by generating random errors in
(1). Therefore, we have a total of 1800 runs and at each
run the signal-to-noise ratio (S/N) of classification ac-
curacy is observed as a response so that one can select
the best robust classification method. Since larger accu-
racy is better, we take the following signal to noise ratio
[22,23]:

SNi = 1

n

n∑
j=1

SNij = 1

n

n∑
j=1

[
−10 log

{
1

2

2∑
k=1

1

y2
ijk

}]
, (4)

where i is each treatment (i =1, . . . , 90), j is the replication
(j = 1, . . . , 10), k is the type of combination functions and
y is classification accuracy.

We use the ANOVA of SN ratio for the Taguchi design
in order to identify significant factor effects. From this ex-
perimentation, we are not only interested in the four kinds
of main effects (correlation, variance, classification method,
and training set size) on the classification accuracy but also
some interaction effects.

3.2. Hypotheses

The main research hypotheses and reasons behind those
are given as H1–H4.

(H1) When the training set size is large, performance of lo-
gistic regression would be better than the other three
methods.

Generally, classifier combination methods would not be
able to take advantage of combining when data size is
large. Some of the classifier combination methods may
loose the information due to the fact that they use partial
variables and observations. So single classifiers such as lo-
gistic regression would be a better choice when data size is
large.

(H2) When the training set size is small, performance of bag-
ging and modified RSM would be better than the other
three methods.

In case of small data size, bagging is known as an accurate
and stable classifier combination method because it com-
bines individual classifiers based on bootstrap resamples.
Also, modified RSM is designated to perform well relatively
in case of extremely small data by using only the half of the
input variables in each bootstrap resample.

(H3) When the training set size is small and the correlation
is strong, performance of the modified RSM would be
better than the other three methods.

It is natural to expect that the performance of the mod-
ified RSM would be better when the data set size is
small and the correlation between input variables is high,

because it uses reduced variable dimension in each bootstrap
resample.

(H4) When the variance of input data is large, classifier se-
lection would perform better than the rest of them due
to their robustness. On the contrary, when the variance
of input data is small, parametric fusion would perform
better than the other four methods.

We expect that the classifier selection would be better than
the other four methods when applied to the data with large
variance because it makes local expert classifiers which are
specialized in specific area of wide input space. On the
contrary, parametric fusion would be better off when the
variance is small, because it will help fitting of meta level
parameter.

4. Results of Monte Carlo simulation

Results of Monte Carlo simulation based on Taguchi
design are obtained in the form of S/N ratio as given in
Eq. (4). We use ANOVA to find significant factors. Re-
sults are obtained at 5% significance level (see Table 5).
Also, Duncan test is conducted for multiple comparison of
classifiers according to data characteristic (see Appendices
A and B).

Since we are interested in any effects related to classifi-
cation algorithm (F1), we try to explain significant effects
with highest order involving (F1). That is classification
method × training set size × correlation (F1 × F2 × F3)

and classification method × correlation × variance (F1
× F3 × F4).

First, the interaction effect (F1 × F2 × F3) is related to
H1–H3. As shown in Appendix A, when training set size is
large, performance of logistic regression is not significantly
different from that of bagging (H1). However when training
set size is small, logistic regression is worse than bagging
(H2). These results present bagging is effective for small
training sample because combining result based on boot-
strap can complement unstable classifiers. In terms of H3,
when small data has strong correlation between variables,
modified RSM performs better than single classifier, classi-
fier selection, parametric fusion. Also, in this case, modified
RSM has no significantly different performance from bag-
ging. It would be due to the fact that both modified RSM and
bagging use bootstrap sampling from small data. Also, in
case of modified RSM, strong correlation between variables
appear to compromise partial loss of input information. The
result of H3 agrees with study by Ref. [8].

Secondly, in terms of F1 × F3 × F4, when correlation
is weak and variance is small, both classifier selection and
parametric fusion combining are the worst choice (H4). It
is observed that the accuracy of combining parametric fu-
sion drops when the estimated parameter detects any pecu-
liar outlier among one or more bootstrap samples. In case of
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Table 5
Analysis of variance for Taguchi design

Source of variation Degree of freedom Sum of square Mean square F-value P-value

F1 4 178.76 44.69 126.82 0.0001
F2 1 55.13 55.13 156.47 0.0001
F1 × F2 4 3.81 0.95 2.71 0.0294
F3 2 2.13 1.06 3.03 0.0487
F1 × F3 8 15.63 1.95 5.55 0.0001
F2 × F3 2 1.71 0.85 2.43 0.0886
F1 × F2 × F3 8 6.84 0.85 2.43 0.0135
F4 2 3.24 1.62 4.60 0.0103
F1 × F4 8 10.12 1.26 3.59 0.0004
F2 × F4 2 0.32 0.16 0.46 0.6329
F1 × F2 × F4 8 1.93 0.24 0.69 0.7032
F3 × F4 4 47.12 11.78 33.44 0.0001
F1 × F3 × F4 16 32.33 2.02 5.74 0.0001
F2 × F3 × F4 4 3.34 0.83 2.38 0.0507
F1 × F2 × F3 × F4 16 3.42 0.21 0.61 0.8790

F1: Classification algorithm; F2: training set size; F3: correlation of variables; F4: variance of input data.

classifier selection, we found that four clusters are the best
fit in terms of accuracy for our test data. In general, how-
ever, classifier selection shows low performance. It would
be due to the fact that some clusters consist of only one
class.

5. Discussion

In this research we compare the classification accuracy
of logistic regression, bagging, modified RSM, classifier se-
lection, and parametric fusion under various combinations
of data characteristics. Four factors ((a) combination func-
tion, (b) correlation between input variables, (c) variance of
observation, and (d) training set size) were used to generate
data while the combination function was used as a uncontrol-
lable factor in Taguchi design. Results of the Taguchi exper-
iment indicated the following at 5% significance level. First,
training set size, correlation among input data, and variance
are significant factors for classification accuracy. Secondly,
when the training data is small and there is strong corre-
lation between input variables, both bagging and modified
RSM perform better than the other three methods. Thirdly,
when correlation is weak and variance is small, both clas-
sifier selection and parametric fusion methods appear to be
the worst.

In order to utilize the lessons we learnt from this experi-
mentation, in practice, one can do a preliminary analysis of
data at hand and check a training set size in relation to the
number of input variable, and correlation as well as vari-
ation. Training set size and three levels of correlation as
well as those of variance used in our simulation can be used
as good indicators to selecting an appropriate classification
algorithm.

In this comparison, we use a logistic model as a basis. It
can be extended to other classification algorithms such as
neural network and decision tree. Results of ensemble, clas-
sifier selection, combining classifier based on these other
individual algorithms may be different from what we ob-
tained in this study. Also, different distribution may have
an effect on classification accuracy in ensemble algorithm.
This simulation result is based on the generated data which
can be extended by adjusting control parameters such as
the number of classes and number of classification features
as well. They can be used as the other factors in the de-
sign of experiment. Such extension is left for further study
areas.
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Appendix A

The classification method × training data size ×
correlation
(F1 × F2 × F3) is given in Table A1.

Appendix B

The classification method × correlation × variance (F1 ×
F3 × F4) is given in Table B1.
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Table A1

Duncan grouping Mean of S/N ratio Classification method Data size Correlation

A 41.14 Bagging Large Strong
B A 41.01 Bagging Large Medium
B A C 41.01 Logistic Large Medium
B A C 40.95 RSM Small Strong
B D A C 40.93 Logistic Large Weak
B D A C 40.85 RSM Large Weak

E B D A C 40.80 Bagging Small Strong
E B D C 40.78 RSM Large Strong
E B D C 40.77 Bagging Large Weak
E B D C 40.69 RSM Large Medium
E B D C 40.68 Bagging Small Medium
E D F C 40.66 Logistic Large Strong
E D F 40.58 Bagging Small Weak
E G F 40.46 Logistic Small Medium

G F H 40.38 Logistic Small Weak
G I H 40.17 Classifier selection Large Medium
G I H 40.15 Subspace Small Medium
G I H 40.14 Parametric fusion Large Strong

I H 40.14 Classifier selection Large Weak
I H 40.06 Classifier selection Large Strong
I 40.04 Logistic Small Strong
I 40.04 Parametric fusion Large Weak
I 40.01 RSM Small Weak
I 39.92 Parametric fusion Large Medium
J 39.62 Classifier selection Small Medium
J 39.52 Classifier selection Small Strong
J 39.50 Classifier selection Small Weak
J 39.50 Parametric fusion Small Strong
J 39.37 Parametric fusion Small Weak
J 39.31 Parametric fusion Small Medium

Means with the same letter are not significantly different.

Table B1

Duncan grouping Mean of S/N ratio Classification method Correlation Variance

A 41.57 Logistic Medium Medium
A 41.45 Bagging Medium Medium

B A 41.33 Bagging Weak Small
B A C 41.19 Bagging Strong Large
B D C 41.04 Logistic Weak Small
B D C 41.02 RSM Weak Small
E D C 40.88 Bagging Strong Small
E D C 40.88 RSM Strong Small
E D C 40.86 RSM Strong Medium
E F D C 40.85 RSM Strong Large
E F D C 40.84 Bagging Strong Medium

G E F D C 40.78 Logistic Strong Large
G E F D H 40.70 Bagging Medium Small
G E F D H 40.69 RSM Medium Medium
G E F I H 40.55 RSM Medium Large
G E F I H 40.50 Logistic Weak Large
G E F I H 40.47 RSM Weak Large
G J F I H 40.43 Logistic Medium Large
G J F I H 40.43 Logistic Weak Medium
G J K I H 40.38 Bagging Medium Large
G J K I H 40.36 Bagging Weak Large
G J K I H 40.35 Bagging Weak Medium

J K I H 40.31 Logistic Strong Small
J K I L 40.20 Logistic Medium Small
J K M L 40.04 Classifier selection Medium Medium
J K M L 40.02 RSM Medium Small
J K M L 40.02 Classifier selection Weak Large
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Table B1 (Continued)

Duncan grouping Mean of S/N ratio Classification method Correlation Variance

J K M L 40.02 Parametric fusion Strong Large
N K M L 39.96 Classifier selection Strong Medium
N K M L 39.95 Logistic Strong Medium
N M L 39.89 Parametric fusion Strong Medium
N M L 39.89 Classifier selection Weak Medium
N M L 39.88 Classifier selection Strong Large
N M L 39.88 Classifier selection Medium Large
N M L 39.82 Parametric fusion Medium Large
N M L 39.81 Parametric fusion Weak Small
N M L 39.80 RSM Weak Medium
N M L 39.77 Classifier selection Medium Small
N M 39.74 Parametric fusion Weak Medium
N M 39.74 Parametric fusion Medium Medium
N O 39.57 Parametric fusion Weak Large
N O 39.55 Parametric fusion Strong Small
N O 39.55 Classifier selection Weak Small
N O 39.54 Classifier selection Strong Small

O 39.29 Parametric fusion Medium Small

Means with the same letter are not significantly different.
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